skip to main content


Search for: All records

Creators/Authors contains: "Kosar, T"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. The low cost and rapid provisioning capabilities have made the cloud a desirable platform to launch complex scientific applications. However, resource utilization optimization is a significant challenge for cloud service providers, since the earlier focus is provided on optimizing resources for the applications that run on the cloud, with a low emphasis being provided on optimizing resource utilization of the cloud computing internal processes. Code refactoring has been associated with improving the maintenance and understanding of software code. However, analyzing the impact of the refactoring source code of the cloud and studying its impact on cloud resource usage require further analysis. In this paper, we propose a framework called Unified Regression Modeling (URegM) which predicts the impact of code smell refactor- ing on cloud resource usage. We test our experiments in a real-life cloud environment using a complex scientific application as a workload. Results show that URegM is capable of accurately predicting resource consumption due to code smell refactoring. This will permit cloud service providers with advanced knowledge about the impact of refactoring code smells on resource consumption, thus allowing them to plan their resource provisioning and code refactoring more effectively. 
    more » « less
  2. Software design debt aims to elucidate the rectification attempts of the present design flaws and studies the influence of those to the cost and time of the software. Design smells are a key cause of incurring design debt. Although the impact of design smells on design debt have been predominantly considered in current literature, how design smells are caused due to not following software engineering best practices require more exploration. This research provides a tool which is used for design smell detection in Java software by analyzing large volume of source codes. More specifically, 409,539 Lines of Code (LoC) and 17,760 class files of open source Java software are analyzed here. Obtained results show desirable precision values ranging from 81.01% to 93.43%. Based on the output of the tool, a study is conducted to relate the cause of the detected design smells to two software engineering challenges namely "irregular team meetings" and "scope creep". As a result, the gained information will provide insight to the software engineers to take necessary steps of design remediation actions. 
    more » « less
  3. Adaptive bitrate (ABR) algorithms aim to make optimal bitrate decisions in dynamically changing network conditions to ensure a high quality of experience (QoE) for the users during video streaming. However, most of the existing ABRs share the limitations of predefined rules and incorrect assumptions about streaming parameters. They also come short to consider the perceived quality in their QoE model, target higher bitrates regardless, and ignore the corresponding energy consumption. This joint approach results in additional energy consumption and becomes a burden, especially for mobile device users. This paper proposes GreenABR, a new deep reinforcement learning-based ABR scheme that optimizes the energy consumption during video streaming without sacrificing the user QoE. GreenABR employs a standard perceived quality metric, VMAF, and real power measurements collected through a streaming application. GreenABR's deep reinforcement learning model makes no assumptions about the streaming environment and learns how to adapt to the dynamically changing conditions in a wide range of real network scenarios. GreenABR outperforms the existing state-of-the-art ABR algorithms by saving up to 57% in streaming energy consumption and 60% in data consumption while achieving up to 22% more perceptual QoE due to up to 84% less rebuffering time and near-zero capacity violations. 
    more » « less